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Building on a recent method by Matthews and co-workers [1], we developed a new and efficient algo-
rithm to assign methyl resonances from sparse and ambiguous NMR data. The new algorithm (FLAM-
EnGO: Fuzzy Logic Assignment of MEthyl GrOups) uses Monte Carlo sampling in conjunction with
fuzzy logic to obtain the assignment of methyl resonances at high fidelity. Furthermore, we demonstrate
that the inclusion of paramagnetic relaxation enhancement (PRE) data in the assignment strategy
increases the percentage of correct assignments with sparse NOE data. Using synthetic tests and exper-
imental data we show that this new approach provides up to �80% correct assignments with only 30% of
methyl–methyl NOE data. In the experimental case of ubiquitin, PRE data from two spin labeled sites
improve the percentage of assigned methyl groups up to �91%. This new strategy promises to further
expand methyl group NMR spectroscopy to very large macromolecular systems.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction conquer strategy [5], where smaller fragments of the proteins or
Traditionally, the structural elucidation of large proteins and
protein complexes at high resolution has been the realm of X-ray
crystallography. However, this technique does not provide an
atomic view of the molecular motions. Also, the presence of con-
formational transitions can only be inferred from the B-factors,
rather than directly probed. On the other hand, conventional
NMR approaches based on the main chain spectroscopy are not
sensitive enough to study large macromolecular complexes.

In the past few years, selective methyl group labeling tech-
niques in highly deuterated proteins, in concert with TROSY spec-
troscopy, enabled the analysis of large protein complexes up to
1 MDa [2]. A significant problem for this approach is the assign-
ment of the methyl 1H/13C HMQC (methyl-TROSY) spectrum. Ide-
ally, one can utilize methyl ‘out-and-back’ experiments, mapping
all of the methyl groups and linking them to the protein backbone
[3,4]. However, this strategy necessitates the assignment of the
backbone nitrogen, Ca, or C0 resonances, which is problematic to
achieve for large systems. Moreover, the pulse sequences utilized
for these experiments require high-level of deuteration and are
generally very insensitive, due to fast T2 relaxation. When the mac-
romolecular complexes are sufficiently large or in the presence of
conformational dynamics (broad resonances and overlap), this
approach fails. In favorable cases, it is possible to use a divide and
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isolated components of the complex are expressed individually
and the resonance assignment is transferred from the sub-spectra
to the spectrum of the intact protein or protein complex [6,7]. Site
specific mutagenesis has also been used to assign specific methyl
resonances [7,8]. Though, the latter is very time-consuming and
prone to generation of non-native folds.

To overcome these hurdles, Matthews and co-workers intro-
duced an automated assignment procedure for methyl group
assignment [1], which compares the experimental chemical shifts
and NOE contacts with those back-calculated from an X-ray crystal
structure. The procedure requires that the number of experimental
NOEs is at least 50% of those back-calculated [1]. Another stringent
condition is the unambiguous mapping of the NOE data onto the
methyl-TROSY spectrum, which requires 4D F2–13C, F3–13C-edited
NOESY experiments. Under these conditions, the approach leads
to >90% correct assignments of methyl resonances for small and
large systems [1]. However, large systems often display fewer
NOE cross-peaks than those predicted from the X-ray structures.
The lack of complete NOE networks significantly deteriorates the
performance of this procedure [1]. In addition, resonance overlap
makes it difficult to accurately map all of the NOE data to the donor
resonances in the methyl-TROSY spectrum. While the use of a 4D
NOESY spectrum alleviates this issue, this route is not robust en-
ough for larger macromolecular systems, which have limited solu-
bility and lower sensitivity.

Here, we present a new automated assignment algorithm,
FLAMEnGO (Fuzzy Logic Assignments of MEthyl GrOups), which
has high tolerance for sparse NOE information (as low as 30%),
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and enables the use of ambiguous methyl–methyl NOEs through
the combination of Monte Carlo sampling and fuzzy logic [9].
FLAMEnGO can incorporate 3D NOESY data from amide-methyl
contacts, 4D NOESY data, as well as paramagnetic relaxation
enhancements (PREs). The latter represents a crucial aid for unam-
biguous assignment of the NOEs in large systems and in the pres-
ence of sparse data. Using only 30% of synthetic NOE data, we show
that FLAMEnGO is able to assign �70% of the methyl resonances of
maltose binding protein (MBP) and cutinase. Finally, for experi-
mental data acquired on ubiquitin, FLAMEnGO can achieve �80%
of the methyl assignments with only 30% of the NOE data, and
up to �91% when PRE data are included.
2. Theoretical basis of the algorithm

2.1. Global score function

The architecture of FLAMEnGO is illustrated in Fig. 1. As for the
previously proposed method [1], our algorithm is based on a global
score function that estimates the agreement between experimen-
tal and simulated NOE contacts. As an input, our algorithm requires
a X-ray crystal structure, a peak picking of the 2D methyl-TROSY
spectrum, and experimental NOESY data of the system under
examination (Fig. 1A). A seed assignment is given to the 2D
methyl-TROSY spectrum and no assignment is necessary for the
NOESY spectrum. The global score function is defined as:

GðxÞ ¼ max
a2A
fMatchtotalg

where a is an assignment from the 2D methyl-TROSY spectrum and
A is the set of all possible assignments of the methyl-TROSY
Fig. 1. Outline of the auto assignment procedure. (A) A graphical illustration of the algo
PRE data are required as input information. (B) A flowchart of the FLAMEnGO algorithm
spectrum , x is the NOE distance cutoff. The function G(x) is used
to find the maximum of a total matching function (Matchtotal),
which is a linear combination of NOEs (MatchNOE), chemical shift
(MatchCS), and PRE (MatchPRE) terms:

Matchtotal ¼ MatchNOE þMatchCS þMatchPRE

Similar to the approach by Matthews and co-workers, a scaling
factor is used in the MatchCS term (here, we used 0.2), while all
other terms are not scaled.

2.2. NOE matching and fuzzy logic

The NOE matching function compares the expected NOE con-
tacts obtained from the crystal structure with the experimentally
determined NOEs. The program first simulates all NOE contacts
among methyl groups from a crystal structure using a given NOE
distance cutoff (x), where contacts are considered to be any methyl
pair less than x. Based on this NOE contact information, we use the
experimental methyl group chemical shifts from the methyl-TRO-
SY spectrum and a seed assignment to identify the expected NOESY
cross peaks (SNOE(x,a)), i.e., simulated NOESY spectrum. Note that
we did not calculate the intensity of the NOEs, since we are only
concerned about the number and position of expected NOE cross
peaks from a 3D structure and the donor peaks in a methyl-TROSY
spectrum.

In our algorithm, both the NOE distance cutoff and the peak
assignment are regarded as variables, which are optimized to gen-
erate an optimal cutoff and the best-fit assignment. To compare the
simulated and experimental spectrum (E), the algorithm matches
the simulated NOE peak (p2) to the closest experimental NOE peak
(p1). The NOE matching function (MatchNOE) is then defined as:
rithm shows that an X-ray crystal structure, experimental NOE data, and (optional)
.
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MatchNOEðSNOEðx; aÞ; EÞ ¼
X
p12E

max
p22SNOEðx;aÞ

e�0:5�D2ðp1 �p2Þ ðE1Þ

where D(p1,p2) represents the distance between the experimental
(p1(x1,y1,z1) and simulated p2(x2,y2,z2) peaks. D(p1,p2) is estimated
from the full width at half maximum (FWHM), assuming Gaussian
shaped peak fitting with FWHM LWx, LWy and LWz for the x, y,
and z dimensions:

Dðp1;p2Þ¼2
ffiffiffiffiffiffiffiffiffiffiffi
2ln2
p

� ðx1�x2Þ
LWx

� �2

þ ðy1�y2Þ
LWy

� �2

þ ðz1�z2Þ
LWz

� �2
" #1=2

ðE2Þ

The procedure starts with an initial seed assignment, which is
swapped iteratively using a Monte Carlo sampling step [10]. The
best-fit assignment is achieved when the match score function
reaches its maximum. To compare the simulated spectra with
experimental ones after each assignment swap, we used fuzzy logic
[9]. Fuzzy logic accounts for ambiguous NOE information by pro-
viding a range of values between a perfect match (‘100%’ or ‘yes’)
and a complete mismatch (‘0%’ or ‘no’), rather than binary re-
sponses (such as ‘yes’ or ‘no’). The fuzzy logic step allows the pro-
gram to compare and score objects (i.e., spectra) based on
measurable criteria (i.e., chemical shift differences), estimating a
percentage of confidence.

Assuming a Gaussian line shape for the experimental NOE
peaks, the FWHM is measured and converted in to a standard devi-
ation of the average peak position. Then, the chemical shift differ-
ence between an experimental cross peak and a simulated peak
will be divided by the standard deviation (E2). Using Eq. (E1), the
program screens all simulated NOE cross peaks (p2) to match the
given experimental peak (p1) by maximizing the Gaussian func-
tion. Thus, the smaller the difference between simulated and
experimental chemical shifts, the higher the score of the Gaussian
function. A score between 1 (complete match) and 0 (no match)
from the Gaussian function will be returned for each peak (p1) in
the experimental NOESY spectrum (E), and the program sums all
scores to provide a match score (MatchNOE(SNOE(x,a),E)) for the
experimental data and the simulated ones.

2.3. Predicted chemical shift information

As an option, we also included a matching function for chemical
shifts predicted from the X-ray structure using software such as
CH3Shift [11] or SHIFTX2 [12]. For the chemical shifts, the target
function (MatchCS) for all of the methyl groups (i) is defined as:

MatchCS ¼ �c �
X

i

jdr
i � dp

i j
ri

ðE3Þ

where dr
i represents the experimental chemical shifts, dp

i the pre-
dicted chemical shifts, ri the predicted error, and c is a scaling con-
stant set to 0.2. The index, i, represents each methyl resonance. This
option is very similar to that introduced by Matthews and co-work-
ers [1], and minimizes the differences between experimental and
predicted chemical shifts. For methyl-TROSY peaks that do not have
NOESY cross-peaks with other resonances, this term can increase
the percent of correct assignments.

2.4. PRE information

Finally, we included an additional function that uses PRE data
(MatchPRE). The PRE data can be implemented either qualitatively
or quantitatively. For qualitative PRE data, we used the following
convention:
MatchPRE¼
X

i

ri
ri¼0 if the resonance i is NOT in its PRE range
ri¼1 if the resonance i is in its PRE range

�

ðE4Þ

where ri is a restraint imposed by PRE on each methyl resonance i.
Methyl resonances are classified into three groups based on the
quenching effects: unaffected (<20% reduction in signal intensity),
slightly quenched (20–80%), and strongly quenched (above 80%).
At the same time, all methyl groups in the structure are ranked
based on their distance to the spin label and grouped into three cat-
egories in analogy with the quenching patterns. For all methyl res-
onance, MatchPRE (E4) is used to score the agreement between
experimental data and distance range. In other words, if a reso-
nance in the strongly quenched group is assigned to a methyl group
within close distance to the spin label, ri is set to 1, indicating a good
agreement of the assignment with PRE restraints. Otherwise, a pen-
alty is added by setting ri to 0.

Furthermore, our algorithm can also use a more quantitative
interpretation of the PRE data, with explicit distance restraints be-
tween each individual methyl group and the spin label [13]. If
quantitative PRE data are available, the distance between a methyl
group and a spin label can be calculated using the following equa-
tions [13]:

Iox

Ired
¼ expð�2Rox

2 sÞ
expð�2Rred

2 sÞ
� Rred

2

Rox
2

 !2

ðE5Þ

d ¼ b
R2;PRE

4sc
3sc

1þx2
Hs2

c

� �� �1=6

ðE6Þ

where Ired is the peak intensity in the methyl-TROSY spectrum of
the protein with the spin label in the reduced state and Iox is
the peak intensity in the oxidized state. The value s is the time
for transfer of magnetization between 1H and 13C spins,
b = 1.23 � 10�44 m6 s�2, xH is Larmor frequency of protons
(rad s�1), and sc is the rotational correlation time of the protein
(s) [13]. Rox

2 can be calculated from Eq. (E5) if Rred
2 is known, and then

R2;PRE ¼ Rox
2 � Rred

2 [13]. Finally, the distance d can be obtained, and
an additional 2 Å uncertainty is included to form a PRE range for
a particular methyl resonance [13]. Again, the same convention
(Eq. (E4)) is used: if the resonance is assigned to a methyl group
which is within d � 2 and d + 2 of the spin label, ri is set to 1; other-
wise a penalty is added by setting ri to be 0.

2.5. Determination of the optimal NOE distance cutoff

An important step in the entire protocol is the optimization of the
NOE distance cutoff (x) to calculate the NOESY data from the X-ray
structure. Smaller NOE distance cutoffs are unable to take full advan-
tage of the information in the NOE data, while larger cutoffs intro-
duce more uncertainties, resulting in lower accuracy of the methyl
assignment. In our approach, we optimize the cutoff by carrying
out multiple assignment calculations with different distance cutoff
values. Thus, the optimal distance cutoff is obtained when the global
score function reaches a plateau. As a result, the simulated data with
the optimal cutoff can utilize most of experimental data without
overfitting. A schematic of the algorithm is reported in Fig. 1B. For
a given NOE distance cutoff value, the total matching function is
maximized using the Metropolis Monte Carlo method [10] by swap-
ping the initial seed assignment on the experimental methyl-TROSY
spectrum. The maximal value is called a global score. In the Monte
Carlo sampling an annealing ‘temperature’ T defined as the total
number of average cross-peaks plus PRE restraints is reduced to 1
in a �1 million swapping steps. At each step, the assignments on
two methyl resonances from the same residue-type (and the same



106 F.-A. Chao et al. / Journal of Magnetic Resonance 214 (2012) 103–110
prochirality) are randomly chosen and exchanged. If the value of the
target function increases or decreases within a random value, the
swapping step is accepted; otherwise, it is rejected and a new pair
of assignments is chosen and swapped. Depending on the system
size, the number of steps can be adjusted to reach convergence. To
determine the confidence for each assignment, we repeated the cal-
culations at the optimal cutoff several times. The most probable
assignment is chosen as the final assignment. The mathematical
proof for the optimization of the NOE distance cutoff is provided in
the Supporting Information.
3. Materials and methods

3.1. Sample preparation

The BL21(DE3) competent cells were transformed with plas-
mids containing the ubiquitin sequence, and inoculated into 1 l
LB medium supplemented with 100 lg ampicillin. Upon reaching
OD600 of �1, the cells were harvested and transferred into 250 ml
100% deuterated M9 medium containing 1 g 15NH4Cl, 4 g deuter-
ated glucose, 70 mg/L methyl labeled a-ketoisovalerate, and
90 mg/L methyl labeled a-ketobutyrate. After 1 h of incubation at
37 �C, 1 mM IPTG was added to induce protein over-expression.
The culture was harvested after 5 h of induction at 37 �C and stored
at �20 �C. The frozen cell pellet was lysed by sonication in 50 mM
sodium acetate buffer at pH 5.0 and centrifuged at 45,000 g at 4 �C.
The supernatant was loaded into a P11 cation exchange column
(WHATMAN) and eluted with a gradient of 0–1 M NaCl. The pooled
fractions containing ubiquitin were further purified by size-exclu-
sion chromatography using a Sephacryl S-200 resin (GE) with
100 mM phosphate buffer (pH 7.0). The fractions were concen-
trated and the sample was then dialyzed in NMR buffer (20 mM
phosphate buffer, 1 mM NaN3, and pH 6.5), and concentrated to
�1.5 mM for the NOESY experiments.

The K48C and G75C mutants of ubiquitin were generated using
a QuikChange kit from Stratagene. Expression and purification
were performed as described above. A fivefold excess of MTSSL
was added to the mutant protein dissolved in NMR buffer at
25 �C for 4 h. The free MTSSL was dialyzed out in NMR buffer at
room temperature. The final samples were concentrated to
�1.5 mM for PRE measurements.

3.2. NMR spectroscopy

A time-shared 3D HMQC-NOESY-HMQC was acquired on a Var-
ian VNMRS instrument operating at a 1H larmor frequency of
600 MHz. A mixing time of 800 ms was used based on the build-
up in 2D planes at various mixing times (150–1000 ms). The spec-
trum was acquired using a spectral width of 10,000 (3500/
2200) Hz for 1H (13C/15N). The indirect dimensions were acquired
with 128 increments in the carbon/nitrogen time-shared dimension,
and 42 increments in the carbon dimension. For data processing, the
number of points in the 13C dimension was doubled by linear predic-
tion and all dimensions were zero-filled. Before MTSSL spin labeling,
the integrity of the mutant ubiquitin samples were confirmed by
[1H, 15N]-HSQC and [1H, 13C]-HMQC, which showed no changes in
the methyl resonances and negligible differences in the amide fin-
gerprint (see Fig. S1). After MTSSL labeling, a [1H, 13C]-HMQC spec-
trum was acquired, the sample was then reduced in the presence
of a 10-fold excess of DTT, and the spectrum was reacquired (Fig. S2).
4. Results

To test the performance of the algorithm in the case of sparse
NOE data, we ran initial tests with two different proteins, whose
structures have been determined at high resolution by X-ray and
NMR: maltose binding protein (MBP) (PDB: 1DMB, BMRB: 7114)
and cutinase (PDB: 1CEX, BMRB: 4101) (Fig. 2A and B). For the cal-
culations, the stereospecificity of Leu and Val methyl groups in
both proteins was assumed to be known. We generated two sets
of sparse NOE data for both MBP and cutinase, with a distance cut-
off of 7 Å, and randomly eliminated 70% of the back-calculated
NOEs. Using the algorithm from Matthews and co-workers [1],
we found that the optimal distance cutoffs were 6.1 and 5.4 Å for
MBP and cutinase, respectively. As an output, we obtained 53% of
correct methyl assignments for MBP (Fig. 2C) and 41% for cutinase
(Fig. 2D). In contrast, FLAMEnGO found an optimal distance cutoff
of 7 Å for both cases, and resulted in �85% and �76% correct
assignments for MBP and cutinase, respectively, with an improve-
ment of �35% in accuracy with respect to the original approach. A
higher accuracy in the determination of the NOE distance cutoff
corresponds to a better tolerance for sparse NOE data. To evaluate
the original algorithm against FLAMEnGO, we again calculated an
assignment with the original script using the correct cutoff (7 Å).
While the accuracy of the resulting assignment improved to 77%
for MBP and 47% for cutinase, it was still found to be significantly
lower than that obtained with FLAMEnGO. Since the same cutoff is
used in this case, the improved results from our algorithm over the
original are due to the more efficient sampling accessible by the
Monte Carlo algorithm built in FLAMEnGO.

To test the algorithm in the presence of spectral overlap, we
simulated 3D F2–13C, F3–13C-edited NOESY experiments for both
MBP and cutinase using their X-ray structures with a 7 Å NOE dis-
tance cutoff. For the original method, we took the NOE data set and
randomly eliminated 30% of the data. If an NOE cross-peak fell
within 0.01 ppm from 1H and 0.1 ppm from the 13C frequencies
in the methyl-TROSY spectrum, we assigned it to that donor reso-
nance. Note that more than one donor resonance can be matched.
In this case the donor is chosen arbitrarily. Under these conditions,
the accuracy of the assignment using the original algorithm de-
creased by 55% and 20% for both MBP and cutinase, respectively
(Fig. 2E and F). In contrast, FLAMEnGO provided �97% and �87%
accuracy for MBP and cutinase, respectively, for cross-peaks falling
within 0.025 ppm for 1H and 0.4 ppm for 13C frequency. Therefore,
the performance of the original algorithm decreases with the in-
crease of the uncertainty of the match between the donor and
the cross-peak (Fig. 2E and F).

Moreover, we tested the performance of FLAMEnGO using 4D
NOESY, PRE, and amide-methyl NOEs as inputs. For both MBP
and cutinase, we back-calculated 3D amide-methyl and 4D
methyl–methyl NOESY spectra, containing only 30% of the NOE
contacts measurable in the X-ray structures. The line widths of
1H, 13C, 15N in the simulated 3D NOESY data were set to
0.025 ppm, 0.4 ppm, and 0.5 ppm, respectively. For the simulated
4D NOESY data 0.8 ppm and 0.1 ppm for both 1H and 13C were
used, respectively. We obtained �10% improvement in the assign-
ments of both MBP and cutinase when 4D data sets were used
(Fig. 3A). Subsequently, we tested the effects of PRE data. For
MBP, we simulated the effect of nitroxide spin labels engineered
at positions 145 and 306 and back-calculated three groups of PRE
effects: methyl groups within 15 Å of the spin label are strongly
quenched, methyl groups between 15 and 35 Å are slightly
quenched, and those beyond 35 Å are unaffected [14]. When the
simulated PRE data were included in the calculations, the percent-
age of correct assignment reached �86% for the 3D dataset and
�91% for the 4D dataset for MBP (Fig. 3A). Most strikingly, if the
assignment of amide chemical shifts and amide-methyl NOE infor-
mation were both included in the calculation, the percentage of
correct assignment increased up to �93% for MBP and �87% for
cutinase (Fig. 3B). It is worthy to note that only 15% of the simu-
lated 3D amide-methyl NOESY data were used.



Fig. 2. Comparison of the performances of FLAMEnGO (red bars) and the original algorithm by Xu et al. [1] (black bars). Crystal structures of MBP (42 kDa, panel A) and
cutinase (22 kDa, panel B). Methyl groups of Ala, Ile(d1), Leu, and Val are marked as red spheres, for a total of 166 (92) methyl groups in MBP (cutinase). All unambiguous NOE
contacts were simulated using the crystal structures and 7 Å NOE distance cutoff (panels C and D). All of the calculations were repeated three times. The error bars indicate
the standard deviations. Panels E and F show the percentage of correct assignment as a function of the tolerance, i.e. chemical shift difference between NOE cross-peak and
peak donor. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Effects of different input data on FLAMEnGO’s performance. Red bars indicate the calculations on MBP, while the blue bars indicate the calculations on cutinase. Only
sparse and ambiguous data were used in the calculations. Data in A and B are based on five independent calculations. The error bars reflect the standard deviation among the
different runs. The final assignments reported in panels C and D were based on the highest occurrence frequency (OF) for each assignment. For MBP (red), S145C and S306C
were chosen as spin labeled sites, while for cutinase (blue), S54C and S135C were chosen. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Furthermore, we evaluated the probability of correct assign-
ments by repeating the calculation five times with the same opti-
mized NOE distance cutoff and choosing the assignment with the
highest occurrence frequency (OF). In this way, we filtered out
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low probability assignments using an OF of at least 0.8. The percent
of correct assignments within this filtered subset (i.e., % correct
with OF P 0.8, y-axis of Fig. 3C and D) was >95% and >85% for
MBP and cutinase, respectively. Adding more experimental infor-
mation (i.e., PREs or 4D NOESY data) significantly increased the
number of assignments with an OF P 0.8 (Fig. 3C and D, x-axis).
Therefore, additional experimental data provides higher confi-
dence in the assignments, while the % correct with OF P 0.8 did
not change significantly (Fig. 3C and D, y-axis). When the 3D
NOESY data with and without PRE information were used for
cutinase, a �10% drop occurs in the accuracy of the assignment
with OF P 0.8 (Fig. 3C). However, as shown in Fig. 3A, there is an
increase in the average number of correct assignments. This is
due to the fact that there are more overall assignments with an
OF P 0.8.

We also compared the performance of FLAMEnGO with struc-
tures of MBP derived from X-ray crystallography and solution
NMR (all atom RMSD �2 Å). Using the synthetic experimental
NOE data from the crystal structure, the protocol gave a lower
accuracy when different conformers were used (the difference
was about 20%). However, the latter can be alleviated by providing
additional stereospecific restraints. This demonstrated that rela-
tively large structural deviations can be tolerated by this approach
(Fig. 4) and highlights the importance of providing stereospecific
information to the algorithm.

Finally, we tested the performance of the two algorithms with
experimental data using a ubiquitin sample, which was uniformly
2H, 15N-labeled and selectively 1H/13C-ILV methyl-labeled. We ac-
quired a 3D (F2–13C, F3–13C/15N-edited) time-shared NOESY at a
mixing time of 800 ms. Since the original algorithm cannot handle
amide-methyl NOEs, only methyl–methyl NOE data were used to
provide a fair comparison. The experimental NOE data set dis-
played approximately 45% of the correlations expected from the
X-ray crystal structure (PDB: 1UBQ, NOE distance cutoff = 5.9 Å).
Since this number is likely to be smaller for large proteins, we re-
duced the data set to 30% of expected peaks. Ignoring the stereo-
specificity, FLAMEnGO provided �70% correct assignments
(Fig. S3), while the original method provided only 39% correct
assignments.

To test the effect of PRE data, we expressed and purified two mu-
tants of ubiquitin (K48C and G75C) and engineered two MTSSL spin
labels. The [1H, 15N]-HSQC and [1H, 13C]-HMQC of the two mutants
were essentially unaffected by the mutations (Fig. S1). The PRE ef-
fects were estimated qualitatively using the intensity of the reso-
nances from methyl-TROSY experiments (Fig. S2). Using data
Fig. 4. Performance of FLAMEnGO using the ensemble of different conformers of
MBP. (A) Overlay of a crystal structure (1DMB) and the solution structure ensemble
(2H25) of MBP. The average all-atom RMSD between the crystal structure and each
NMR conformer was up to 2.2 Å. (B) FLAMEnGO calculations for 5 selected NMR
conformers. In addition to the seed assignments, we used residue-type information,
stereospecific restraints, and 30% of the methyl–methyl NOE data as an input. Three
independent calculations were carried out with an average of �72% correct
assignment.
corresponding to 45%, 30% or 15% of the expected methyl–methyl
NOE cross peaks, as well as stereospecific and residue-type informa-
tion, FLAMEnGO generated �85% correct assignments (Fig. 5B)
without PREs and �91% with PREs. Remarkably, the inclusion of
amide-methyl NOE cross peaks increased the correct assignments
up to �94% without PREs, and �100% with PREs (Fig. 5D).
5. Discussion

Our approach builds on the previous work from Matthews and
co-workers [1] for the assignment of methyl groups. A significant
improvement with respect of the original approach is obtained
with the fuzzy logic step and enhanced sampling by Monte Carlo
method. The use of fuzzy logic allows the comparison of highly
ambiguous NOEs obtained from 3D experiments and is more toler-
ant for sparse data. While the Matthews’ approach does not per-
form well with sparse NOEs (less than 50% than expected), our
algorithm performs well even in the presence of 30% of the NOE
data. Sparse and ambiguous data sets are expected for large mac-
romolecular systems or for situations in which conformational
dynamics reduces the sensitivity of the NMR experiments. There-
fore, this implementation will extend the methyl-based NMR spec-
troscopy approach to larger systems. Our program handles
additional information such as PRE data, amide-methyl NOE data,
and 4D NOESY data to improve assignment accuracy and conver-
gence of the sampling,

As for the Matthews approach [1], our algorithm is sensitive to
residue-type and stereospecific information available for the
methyl groups. For instance, when applied to ubiquitin with the
complete experimental NOESY data, but without residue-type
information, FLAMEnGO provides �82% of the correct assignment;
in contrast to only �55% of the correct assignment when stereo-
specific information is missing. Nonetheless, residue-type and ste-
reospecific assignment can be easily obtained with selective
labeling schemes [15,16], reducing the sampling space for the algo-
rithm and increasing its convergence. For ubiquitin, the algorithm
generated �94% correct assignments when residue type informa-
tion was provided.

What is the impact of the implementation of chemical shifts
predicted from the X-ray structures? The protocol from Matthews
and co-workers [1] relies on predicted chemical shifts as a crucial
step in the assignment procedure. We found that the inclusion of
predicted chemical shifts is important when NOE data are sparse.
However, the inclusion of predicted chemical shifts may decrease
the overall accuracy of the assignments, since discrepancies be-
tween calculated and experimental chemical shifts can be large.
Furthermore, if the chemical shifts are not referenced correctly, it
is possible to introduce severe errors in the assignment procedure.

As mentioned, the determination of optimal cutoffs for the NOE
spectra simulated from crystal structures is very important. The
NOE cutoff is optimized using several runs, arraying its value to ob-
tain the minimal cutoff value, which accounts for most of the exper-
imental NOE data. Although larger NOE cutoffs might appear
optimal for taking into account long-range NOE information, they
can also introduce more uncertainties during the assignment swap-
ping steps of the algorithm. Long-range information can also be
introduced in the algorithm using PRE effects, which we demon-
strated to increase the accuracy of the assignment protocol dramat-
ically. In fact, PRE data can provide long-range distance restraints
that cannot be obtained from NOE, resulting in improvements of
the assignment accuracy by up to 15% (Figs. 3A, C, 5B, and D).

Finally, the density of the NOE network influences the perfor-
mance of the algorithm: the higher the number of NOE cross-
peaks, the more accurate is the assignment. Moreover, pushing
the limits on the range of the experimental NOE conveys more



Fig. 5. Automated assignment of experimental data from ubiquitin using FLAMEnGO. Percent assignment with NOE data only is reported using blue bars, while with NOE and
PRE data is reported using red bars. Three independent calculations were carried out. (A) Plot of the global score function versus the NOE distance cutoff. The optimal NOE
distance cutoff (5.9 Å) is chosen at the curve plateau (red point). (B) Percentage of correct assignment obtained with only methyl–methyl NOE data (�45% of the expected
NOE cross-peaks). (C) Plot of the global function versus NOE distance cutoff for both amide-methyl and methyl–methyl NOESY data. (D) Plot of the percentage of correct
assignment using both amide-methyl and methyl–methyl NOESY experiments and NOE distance cutoff of 6.2 Å. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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information to the program to assign methyl groups. Thus, the
mixing time in the NOESY experiment should be optimized to pro-
vide such information. In addition to Leu, Ile(d1), and Val, new bio-
synthetic strategies have been introduced for producing proteins
with 13CH3 labeling at Ala, Met, Ile(c2), and Thr [17–19]. The com-
bination of these labeling schemes will provide more dense clus-
ters of methyl–methyl NOE network, which should dramatically
increase the performance of our approach.
6. Conclusion

In summary, we propose a new assignment strategy that is very
tolerant to sparse and ambiguous NOE data. We demonstrated that
the inclusion of either qualitative or quantitative PRE data, or
amide-methyl NOE data, dramatically increases the convergence
of the algorithm to assignment accuracy greater than 90%. These
aspects make our approach more applicable to larger macromolec-
ular systems, where sparse information due to size and intrinsic
dynamics reduce the performance of NMR experiments.
Note added in Proof

A recent paper by Clore and co-workers (DOI 10.1007/s10858-
011-9559-4) uses paramagnetic relaxation enhancement to
speed-up the assignments on the methyl groups. While we use
the same principle, our algorithm utilizes the concept of fuzzy logic
to overcome the need of quantitative PRE data and the inclusion of
4D NOESY data.
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